






Fixed Function Forwarding Plane

SDK

Control Plane

Network Operating System



Programmable Forwarding Plane

Compiler

Control Plane

Network Operating System

API



Looking Lower
Programmable Data Planes

Aaron A. Glenn, Principal Network Specialist @ Predicted Paths BV

This presentation is RFC1925 compliant



“A user interface is well-designed when the program behaves exactly how 
the user thought it would.” – Joel Spolsky



A Domain Specific Expression

We are interested in processing packets

Processing packets involves parsing headers, and manipulating bits with a 
side of simple logic*

No requirement for the complexity (and pitfalls!) of a general purpose 
language like C++ or Rust

Those languages are for your control & management plane

*often you need great amounts of simple logic



The P416 Language

A domain specific language to describe the behavior of a packet processing 
forwarding plane

Express packet processing application logic & define capabilities of a packet 
processing architecture in the same language

Begin at github.com/jafingerhut/p4-guide for more in-depth

Codify processing logic and underlying forwarding system capabilities through 
the Match-Action abstraction

https://github.com/jafingerhut/p4-guide


Reconfigurable Match-Action Table

Bosshart, Pat, et al. "Forwarding metamorphosis: Fast programmable match-action processing in hardware for SDN." 
ACM SIGCOMM Computer Communication Review 43.4 (2013): 99-110.



Portable Switch Architecture

“P4 programs specify how the various programmable blocks 
of a target architecture are programmed and connected. The 
Portable Switch Architecture (PSA) is a target architecture 
that describes common capabilities of network switch 
devices that process and forward packets across multiple 
interface ports.” – from p4.org/p4-spec/docs/PSA.html

https://p4.org/p4-spec/docs/PSA.html


Portable Switch Architecture

 Figure 2 from p4.org/p4-spec/docs/PSA.html#packet-paths

https://p4.org/p4-spec/docs/PSA.html#packet-paths


Domain Specific Value Proposition

What do we want? Resilient and tractable networks

What does that mean? Understand how it operates as to configure and 
interact(?) with it

Infrastructure as Code – representation can be translated / compiled to 
different interfaces. See P4 to VPP. Domino to P4. NPL to P4. 

“Artisanal MPLS” – bespoke protocols

Powerful for simplicity, differentiation, representation

But also, power.



Reconfigurable Responsibilities

Power dynamics between operator and vendor are very different in a 
programmable data plane environment

Vendor provides device / system as well as compiler: Bad compiler, bad 
experience, no useful outcomes.

Road-map, resource prioritization, application support in hands of operators

Hardware vendors need to excel at software

“You should download an MPLS stack, actually” - Aaron A. Glenn



The Power Problem

As bandwidth goes up, so does power draw. ASIC + optics = Watts

Network operations takes many people just to move data around

What if the network could off load common computational patterns?

A programmable network can

“Show me someone who doesn’t want 10% or more of their general compute free’d 
up for general computing tasks!” - Aaron A. Glenn



In-Network Computing

Sapio, Amedeo, et al. "In-network computation is a dumb idea whose time 
has come." Proceedings of the 16th ACM Workshop on Hot Topics in 
Networks. 2017.

Caching, Consensus, & Coordination

Key / Value stores

String & Pattern matching

Machine Learning!



The Software Problem

With great power comes great responsibility…

…but also software engineering is a commercially mature (and more 
common) practice

P4 is incomplete! Come fill it out with us!

The Independent Software Vendor model for network protocols & stacks



Questions & Cool Research

OK, now your turn!

“TEA: Enabling State-Intensive Network Functions on Programmable Switches”

“RedPlane: Enabling Fault-Tolerant Stateful In-Switch Applications”

“Lyra: A Cross-Platform Language and Compiler for Data Plane Programming on 
Heterogeneous ASICs”

“Lucid: A Language for Control in the Data Plane”

“Aquila: A Practically Usable Verification System for Production-Scale 
Programmable Data Planes”


