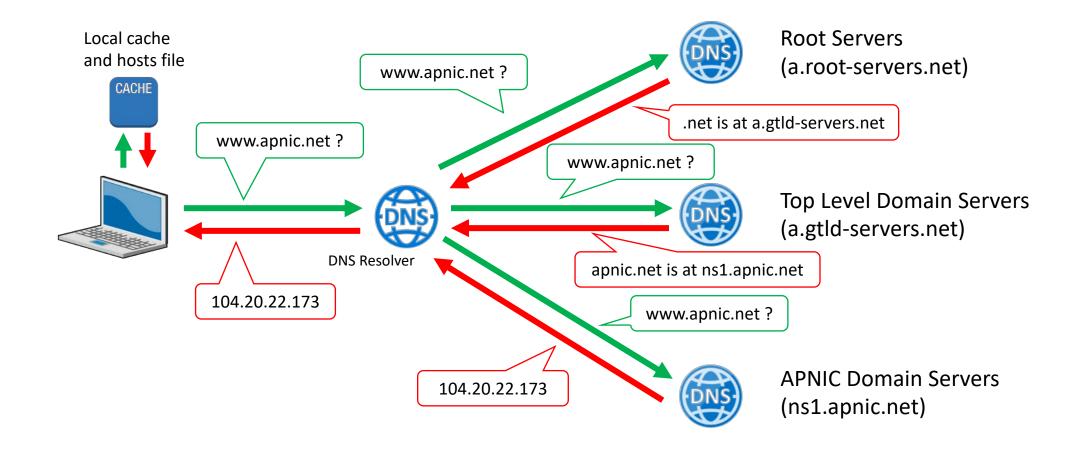
DNS Security from the Client Perspective

What is DNS?

- DNS is the Domain Name System
 - human readable names like www.apnic.net
 - translated into addresses like 104.20.22.173 or 2606:4700:10::6814:24ad
- DNS is an old protocol
 - RFCs 882 and 883 were written in 1983 that cover what domain names are and how to implement them
 - RFC = "Request For Comments" which are internet standards documents
 - RFC1035 was written in 1987 which extended DNS to use TCP as well as UDP

Life of a Domain Name

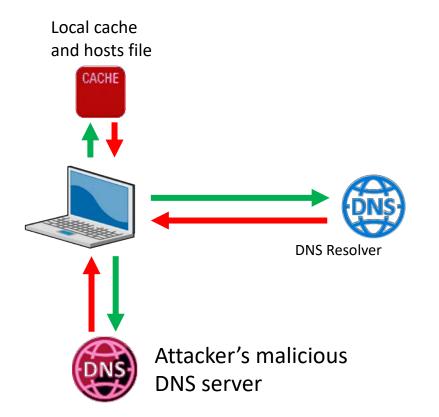
- The registrant (you) pays to register a domain with a registrar
 - Technically you don't buy a domain, more like renting
- The registrar checks with the appropriate registry database to see if the domain name is available
- The registrar then registers the domain with the registry and the registry configures the TLD root servers with the DNS server details you provided



Where Can Domain Names Go Wrong?

- Someone else may have already registered a domain:
 - With your company name
 - With a name similar to your company name
- If you don't renew your domain name, it will expire
 - Someone else can pay to acquire your newly available domain name
 - There are entire businesses built to find and re-sell these expired domains
- Malicious attackers can break into your registrar account
 - Redirecting your entire domain to DNS servers controlled by the attacker
 - This is a supply chain risk
 - Does your domain registrar support 2FA?
 - Will your registrar make changes based on a FAX or letter on fake letterhead?

Life of a DNS Request

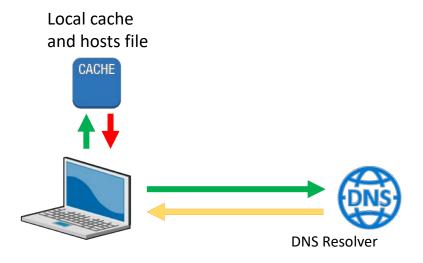


Where Can DNS Go Wrong?

- Lots of ways!
- Let's examine the security issues along each step of a DNS request
- Remember to identify security compromises against:
 - Confidentiality
 - Integrity
 - Availability

Problem – Local Hosts and Client Malware

 Malware edits the local hosts file to answer the request before contacting a DNS resolver

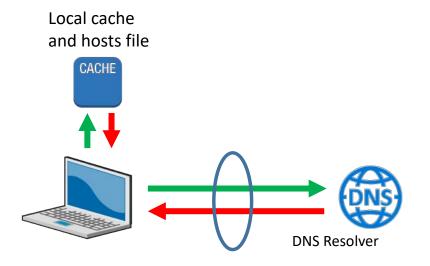

or

 Malware changes local DNS settings to use an attacker's DNS server and return false responses

Problem – DNS Resolvers

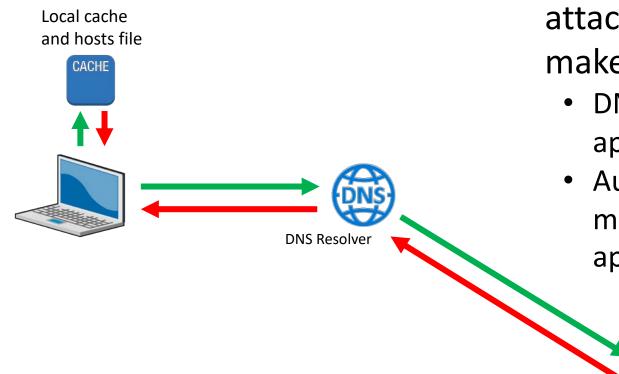
- DNS Resolvers can be configured to modify responses
- Attackers can remotely poison DNS Resolvers to give false responses
- DNS Resolvers can block responses

Problem – Privacy Like A Postcard

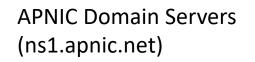


POST CARD What is the IP To: address for DNS Resolver www.apnic.net ??? From: My Laptop PC

Problem – Privacy Like A Postcard



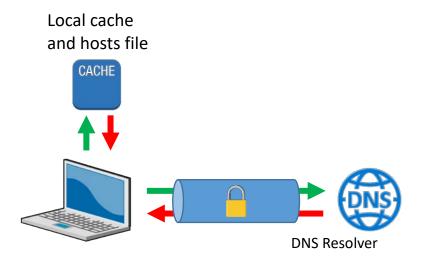
- DNS queries and responses are sent as unencrypted cleartext
- DNS queries and responses can be read and stored:
 - By the local network operator
 - By the upstream Internet provider



Problem – Denial of Service Attacks

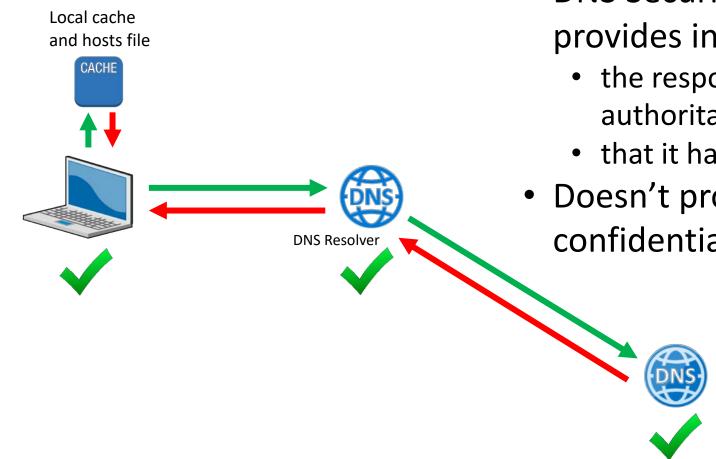
- Distributed Denial of Service (DDoS) attacks can overwhelm servers and make them unresponsive
 - DNS resolver attacks make the internet appear to be inaccessible
 - Authoritative domain server attacks make individual domains and web sites appear inaccessible

APNIC


Making DNS Secure

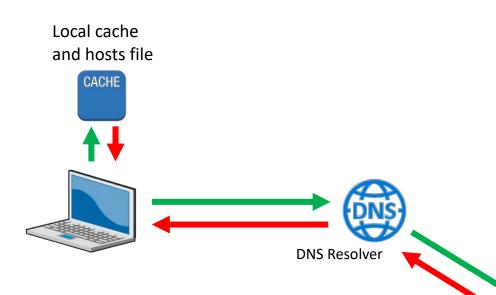
- Think back to the 3 concepts we want to protect and how can we defend them
 - Confidentiality
 - Encryption
 - Integrity
 - Cryptographic hash verification
 - Availability
 - Redundancy

Making DNS Secure - Encryption



 DNS over TLS and DNS over HTTPS provide encryption to protect the confidentiality of the requests and responses

Making DNS Secure - Cryptographic Hashes



- DNS Security Extensions (DNSSEC) provides integrity checking, ensuring:
 - the responses are coming from the true authoritative domain server
 - that it hasn't been modified along the way
- Doesn't provide any protection of confidentiality

APNIC Domain Servers (ns1.apnic.net)

Making DNS Secure - Redundancy

- Operating multiple authoritative domain servers provides redundancy and protects availability
 - Harder for DDoS attack
 - Allows for maintenance downtime
 - Allows for faster responses if spread geographically

APNIC Domain Servers (ns1.apnic.net) (ns2.apnic.net) (ns3.apnic.net)

Making DNS Secure - Endpoints

- Don't forget the basics!
 - Endpoint protection including anti-virus/anti-malware
 - Users not running with administrator privileges
 - Updating operating systems and applications

- There's also some different DNS protection techniques for endpoints and even IoT devices
 - Configure your own DNS RPZ (Response Policy Zones)
 - This lets you block whatever you like
 - Use a public RPZ such as Quad9.net (set DNS = 9.9.9.9)
 - Quad9 only blocks malicious domains

Conclusion

- Domain names and DNS are more complex than most people think
- With complexity comes risk
- Make sure to identify all gaps in systems and digital supply chain
- Defence in depth is important, even for low-level infrastructure

